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Abstract: This paper focuses on the linear matrix inequality (LMI) characterizations of fractional-order linear systems. Based
on the generalized Kalman-Yakubovic-Popov (KYP) lemma, two bounded real lemmas of fractional-order linear systems are
introduced with respect to two different norms respectively. Then an new bounded real lemma is proposed with more degrees of
freedom. In terms of a set of LMISs then, it is generalized for a class of fractional-order uncertain linear systems with the convex
polytopic uncertainties , which forms less conservative constraints on ., performance. Finally this result is demonstrated in a

numerical example.
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1 Introduction

In recent years, an extensive research has been devoted to
extend linear matrix inequality (LMI) characterizations for
stability and performance of fractional-order linear systems
(FOLS). Starting from the work of [1-3], LMI have gained
increasing interest in FOLS and its control theory. The LMI
stability conditions for FOLS were investigated in [3-5] and
several LMI-based stability criterions were verified. Due to
the potentialities of FOLS to improve classical systems sta-
bility, there are many works on robust stability and stabi-
lization of FOLS [6-15, 17-19, 23, 24] and the references
therein.

LMI-based robust stabilization is fundamental to the
fractional-order uncertain systems control. As a way of ef-
ficiently solving the robust stability and stabilization prob-
lem, LMI-based approach was presented in [6-8] that pro-
vided the sufficient conditions and designing methods of
state feedback controllers for fractional-order interval sys-
tems. [9-11] extended the LMI-based robust stability to
the fractional-order interval systems with linear couplings a-
mong the fractional order, the system matrix and the input
matrix. The static output feedback controller and observer-
based controller were derived in [12, 13] by using matrix’s
singular value decomposition and LMI techniques. In [14],
the robust decentralized control of perturbed fractional-order
linear interconnected systems with structured and unstruc-
tured perturbations was derived. The maximal robust stabi-
lizability perturbation bound was computed by LMI solver-
s for the fractional-order uncertain systems and the corre-
sponding linear state feedback stabilizing controller was giv-
en in [15]. Although the state feedback H ., control and the
static output feedback H., control of commensurate FOL-
S were firstly presented in [18] and [19] respectively, the
LMI-based H . control and H ., performances of FOLS re-
main some works to be done, which is an important study of
FOLS that we intend to motivate.

To authors’ best knowledge, the concept of H -norm for
FOLS was investigated in [1, 2] early and in [16] recently.
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Zhejiang under Grant R1110443.

It was shown in [17] that the standard Nehari problem for
FOLS can be solved by the generalized Youla parameteriza-
tion. By use of the bounded real lemma for FOLS, the H
model reduction of FOLS was proposed in [20] and the H o,
performance was characterized in [21]. The key idea of eval-
uating the H .-norm of FOLS using LMI-based approach is
the bounded real lemma [1, 18, 20, 21]. As a special case
of the generalized Kalman- Yakubovic-Popov (KYP) lemma,
the bounded real lemmas for FOLS still need to be extended
[21, 22].

In our contributions, based on the generalized KYP lem-
ma, two bounded real lemmas of FOLS are introduced with
respect to two different norms respectively. To generalize
the classical results in [23] to one of fractional-order uncer-
tain systems, i.e., fractional-order polytopic systems (FOPS)
[24, 25], an alternative bounded real lemma is proved with
more degrees of freedom. Then it is generalized with the
convex polytopic uncertainties in terms of a set of LMIs.
The new bounded real lemma for FOPS provides an alter-
native approach to deal with the system #., performance
with less conservative. Finally, this result is demonstrated in
a numerical example.

We use the following notations. The transpose of a matrix
A is denoted by AT. A,A* denote the conjugate and the
conjugate transpose of a matrix A respectively. I,, denotes
the identity matrix of dimension n. The symbol H,, stands
for the set of n x n Hermitian matrices. R, C are the sets of
real and complex numbers respectively. A + A* is denoted
by Sym{A} and 5(A) is the maximum singular value of a
matrix A. ® is the Kroneckers product. For A € C"*™ and
B € H,, 4 m, afunction o : C"*" xH,, 4, — H,, is defined

by
o(A, B) = [ﬂ BLA]

2 Preliminaries

In this paper, as the physical meaning is concerned, we
use the Caputo fractional-order derivative.

Definition 1. [4] Let f(t) is a real continuously differen-
tiable function. The Caputo fractional-order derivative with
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order 0 < v < 1ont > 0 is defined by

1 N ARIC
I'(n—v) /0 (t — 7)w—ntl) dr,

where n. = [v],v > 0, [-] is the ceiling function.

Dy =

The commensurate fractional-order linear time invariant
system can be described by the following pseudo-state space
representation (A, B,C, D,v).

{ D¥x(t) = Ax(t) + Bu(t) 0
y(t) = Cx(t) + Du(t)

where () € R™ is the pseudo-state, u(t) € R™ is the
input signal, y(t) € RP is the output. D¥ is the Ca-
puto fractional-order differentiation operator with fraction-
al order v. A, B,C, D are constant matrices with appropri-
ate sizes. The transfer function between u(t) and y(t) is
G(s) = C(s¥I — A)"'B + D and its impulse response is
gt) = L7HG(s)}.

We only consider the case 0 < v < 1 for simplicity, be-
cause it always possible by including the additional pseudo-
states. The minimal realization is very useful for obtain-
ing pseudo-state space representations from fractional-order
transfer functions.

Assumption 1. The fractional-order linear time invariant
system (A, B, C, D) is the minimal realization of order v if,
and only if, it is concurrently observable and controllable.

Remark 1. As the heredity and nonlocality of fractional-
order differentiation operators, the x(t) does not reflect the
true dynamics and therefore are named “pseudo-state” or
“quasi-state”. The initialization problem plays an important
role in real applications of FOLS.

Definition 2. [16] A fractional-order linear time invariant
system is bounded-input bounded-output (BIBO) stable if,
and only if, y(t) = g(t) * u(t) € Loo(RT,RP) for any input
u(t) € Loo(RT,R™), where % is the convolution operator.

Theorem 1. [16] A fracitonal-order linear time invariant
system (A, B,C,D,v) with 0 < v < 1 is BIBO stable if,
and only if, |arg(spec(A))| > vZ, where spec(A) is the
spectrum of all eigenvalues of A.

Theorem 2. [5] A fractional-order linear time invariant sys-
tem (A, B,C, D,v) with 0 < v < 1 is BIBO stable if, and
only if, there exists a positive definite matrix X = X* € H,,
such that

(rX +7X)TAT + A(rX +7X) <0,

wherer = €196 = (1 — v)5.
Definition 3. [2, 16] L..-norm of a system G(s) in Lo
space is denoted by ||G(s)|z.. = Supwerd(G(jw)).
Hoo-norm of a system G(s) in Ho space is denoted by
1G(5) 1o = SUPRe(5)>00 (G(5))-

For the proper and stable G(s), the two norms are equiv-
alent. The frequency ranges can be characterized in the gen-
eralized Kalman-Yakubovic-Popov (KYP) lemma as the set

of complex numbers that represent a certain class of curves
[22].

A@,0) = {A € Clo(A, @) =0,0(\, T) >0}, (2)

where @, \If € H. -

Define A = A U {oco} if A is bounded, otherwise A = A.
Theorem 3. (Generalized KYP [22]) Let matrcies A €
Rnxn’B c RnXm’@ c Hn+my F = |:}4 §:| c
C2x(m+n) and & W € Hy. Define A and A as (2). Sup-
pose that A represents curves on the complex plane. Denote
Ny the null space of '\ F',where

[ - AL aeC
A0 Ll A=00

The following statements are equivalent.

(i) NyON, < 0,YA € A(®, V),

(ii) There exists P,Q € H,, such that Q > 0 and F*(® ®
P+U®Q)F+6<0.

Moreover, if rank(I\F) = n,YA € CU{oo} is satisfied.
The following statements are equivalent.

(i) NyON, < 0,YA € A(®,¥);

(ii) There exists P,Q € H,, such that Q > 0 and F*(® ®
P+U®Q)F+6<0.

When ©, F, ®, U are all real matrices, P, @ in (ii) can be
restricted to be real without loss of generality. It is obvious
that IV, the null space of I'y F' can be specified by

Ny = [HI(A)} JH(\) = (M — A)~'B.

To extend the KYP lemma for FOLS, the curves described
by A can be relaxed to T as the following corollary.

Corollary 1. [21] If the set A(®, V) is replaced by
T(®,¥) = {X € Clo(\,®) > 0,0(A\,¥) > 0}, the con-
dition NYONy < 0 holds for any X € Y if there exists
positive definite matrices P, Q € H,, such that F*(® @ P +
Ve Q)F+6<0.

3 Bounded Real Lemmas for FOLS

In this section, based on the generalized KYP, two bound-
ed real lemmas of FOLS are introduced in LMI characteriza-
tions. It should be noted these results are not new [21], alter-
natively, they provide another efficient approaches of com-
puting the H ..-norm or the £.,-norm of FOLS.

The frequency range of FOLS with order 0 < v < 1
can be characterized as a curve (or curves) on the complex
plane. According to (2), define ¢ = (1 — v)7, the curve of
the frequency constraint on ||G(s)]| 2. is

0 e 0 1-v
A(Lje 0 :|7|:].V 0 :|) (3)

The curve of the frequency constraint on ||G(s)]|3., is
{\ € C|\ = (s)¥, Re(s) > 0}, which can characterized by

0 39 0 —J9
T( |:e—j9 PO :| ) |:€j9 ‘ 0 :|) (4’)

Remark 2. Although the stability of FOLS with order 0 <
v < 1 is not convex set in the complex plane [3, 4], the fre-
quency range for computing H .. norm is convex. Therefore,
it can be characterized by the quadratic function.
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The upper triangular elements in Hermitian matrices are
denoted by the symbol x* briefly.

Theorem 4. Let the transfer function G(s) = C(s¥1 —
A)"YB + D of (1) and a positive real number ~y > 0.Then
IG(s)||c.., < 7y holds if, and only if, there exists matrices
P,Q € H,, such that Q > 0 and

Sym{(e’ + (1~ 1)Q)A)
BT (e + (1 - 1)Q)
C

ES

—~I
D

£
* < 0.

77[

&)

Proof. According to Definition 3 and &(G(s))
(G*(s)) = a(G(s*)) holds for any s € C, we have

supL>00 (G(jw)) = supu>00(G(—jw)) = supu<oa (G (jw)),

supL>00 (G(jw)) = supuerd (G(—jw)) = [|G(s)| c..-

Therefore, ||G(s)|z.. = sup,>0{C(A(w)] — A)"'B +
D} < v and can be reduced into G(jw)*G(jw) < ¥2L,,.

The frequency curves {\ € C|A\(w) = e/V3w”, w > 0}
can be represented by (3), i.e.,

0 eJ° 0 1-—v
o=l =0, .
Let H(A) = (AN — A)*lB,G) =
cre CTD H()\)
DTC DTD—VQIM]JV)\ = [Im , we have
NON, < 0.
According to Theorem 3, we have
T .
A B 0 e 7? 0 1-v
{In 0} (Lﬂ") 0}®P+{1—u 0 }®Q)X
A B crc CTD

0

|

|+]
That is

sym{(eje_P +(1-v)Q)A}
BT (7P + (1 -1)Q)

| <o

]+[CD]T[OD] <

I, DTC DTD— 421,

*
_'72Im

Then using complex Shur complement [ 18], and multiply-
ing with diag[y=2 I,y 2 I, ’y%Ip] on both left and right
sides, the final condition (5) is obtained. O

Theorem 5. Let the transfer function G(s) C(s"I —
A)"IB + D of (1), and a positive real number ~ > 0. Then
|G (s)||n.. < 7y holds if there exist positive definite matrices
P,Q € H,, such that

Sym{(c1P + Q) A}
BT (P +e779Q))
C

*

—~I
D

*
* < 0.

_fyI

=1

(6)
Proof. Note Definition 3, and ||G(s)||.. < <y can be re-
duced into G(3)*G(s) < Y2 Ipn.
The curve {A € C|\ = (s)”, Re(s) > 0} can be charac-
terized by (4),i.e.,
—j6
o=l ]

el?
0

0
e 9

0
el?

T@,m),@:[ ¢

0.
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Let H(\) = (N — A)_lB, © =
cTc CcTD H()\)
[DTC DTD—VQI,,J’N)‘ { jaE we have
N;@NA < 0.
According to Theorem 3, we have
T . )
A B 0 el 0 e
o] (e SJereld e
A B " cre CTD <0
I, 0 DTC DTD —~%1, '
That is
sym{(e 1P + Q) A} % T

Then using complex Shur complement [18], and multiply-
ing with diag[y~ 21,y 2, 7% I,] on both left and right
side, the final condition is obtained similarly. O

Remark 3. Although L..-norm bounded real lemma is a
sufficient and necessary condition, the systems stability can-
not be guaranteed and it is difficult to design stabilization
controllers. The H o-norm can be obtained by (5) if the G(s)
is stable, which is less conservative than (6).

The H .-norm of FOPS can be computed from  .-norm
bounded real lemma directly, the state feedback H . control
problem were proposed in [18].

4 Bounded Real Lemma for FOPS

Since polytopic domains are a class of quite general rep-
resentations of parameter uncertainties, fractional-order sys-
tems with real convex bounded uncertainties have received
considerable attention [23, 24] recently. The real convex un-
certainties can be described as follows.

Definition 4. The parametric uncertainties (A, B, C, D)(a)
are affine functions of the uncertain parametric vector a €
RY described by the convex pplytope M with vertices at

(A]7B])C]’D7)7j = 1,. 7ZV

!

A fractional-order polytopic system (FOPS) can be de-
scribed by the uncertain pseudo-state space representation
(A(a), B(a),C(a), D(a)).

{

where x(t) € R™ is the pseudo-state, u(t) € R™ is the in-
put signal, y(¢) € RP is the output. D" is the fractional-
order differentiation operator with order v. M(a)
(A(a), B(a),C(a), D(a)) are uncertain matrices in M with
appropriate sizes. The transfer function between w(t) and
y(t)is G(s) = C(a)(s¥I — A(a))"*B(a) + D(a).

Now, Theorem 5 can be generalized directly for
fractional-order uncertain systems with the convex polytopic
uncertainties in terms of a set of LMIs.

(A,B,C,D)(a) = Z;\le aJ(Aij]7C],DJ)
>N 4y =1,a;>0=1,... N

DVx(t) = A(a)z(t) + B(a)u(t)

y(t) = Cla)z(t) + D(a)u(t) 9
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Theorem 6. Let the transfer function G(s) = C(a)(s"I —
A(a))~tB(a)+ D(a) of (8), and a real number y > 0. Then
|G (s)||n.. < v holds if there exist positive definite matrices
P,Q € H,, such that

Sym{(e7'P +e%Q)A;} *
== BT (1P +e77°Q) —~I x| <0,
Cj Dj —’}/I

forallj=1,... N.

. N =
Proof. Consider } ., a;=; =

Sym{(e’jeP + eng_)A(a)} * *
B(a)T (7P +e770Q) —~I % | <O.
C(a) D(a) —oI

By use of Theorem 5, the sufficiency can be demonstrated.
O

On the other hand, an alternative bounded real lemma for
FOLS is introduced based on Theorem 5, which is motivated
by the results in [23]. Then it can be generalized for the
convex polytopic uncertainties in terms of a set of LMIs.

Theorem 7. Let the transfer function G(s) = C(s"I —
A)"YB + D of (1), and a positive real number > 0. Then
|G (s)||n.. < v holds if there exist positive definite matrices
P,Q € H, and I1,%, E1, Fy € H,,E;, F;,i = 2,3 such
that (8) is satisfied.

Proof. The equivalence of the LMI representations in Theo-
rem 5 and Theorem 6 can be established as followings.

(2] = =) Suppose that there exist positive definite
P,Q e H,,II,¥ and E;, F;,7 = 1,2, 3 such that the equiv-
alent LMI representation holds.

Choose the matrix transform 7" with full row rank as

I 0 0 AT —AT
T=1|0 I 0 BT -BT
0 0 I O 0
It is easy to show that T2, 77 = Z,. Then using Theorem

5, we have ||G(s)||n.. < 7.

(2, = =) According to Theorem 5, there exist positive
definite P, € H, such that =; < 0. This condition can be
reduced to that there exists a scalar ¢ > 0 such that

Sym{(e779P + e1Q)A} + e AT A * *
BT (P +e79Q)+eBTA  eBTB—~I
C D —~I

< 0.
By use of the complex Schur complement [18], we have

Sym{(e7 P +e?Q)A} * * *
BT (9P + e779Q)) 7 * *
C D —~I * *
€A eB 0 —2€l *
—eA —eB 0 0 —2el

< 0.

Setll = ¥ = EI, E, = F = —e 9P — ejeQ,Ej, =
F; =0,7 = 2,3, itis easy to see that Ell holds.

So far, the equivalence of the LMI representations of =; <
0 and E/l < 0 is proved completely. O

In Theorem 6, one could solve the H,-norm problem by
seeking a single pair P, @ for all LMIs associated with the
vertices of the polytope. On the other have, using Theorem
7, an alternative bounded real lemma for FOPS can be de-
veloped here, which reduces the conservation of Theorem 6.

Theorem 8. Let the transfer function G(s) = C(a)(s"I —
A(a))"'B(a) + D(a) of (8), and a positive real number
v > 0. Then ||G(s)||lsc < 7 holds if there exist positive
definite matrices P;,QQ; € H,, and 11,3, Eq, Fy; € H,,, j =
1,...,N;Fy;,Ey 0 = 2,3;5 = 1,..., N such that (9) is
satisfied forall j = 1,...,N.

Proof. Consider Theorem 6, let P(a) =
N N
Zj:l a;Pj, Q(a) = Zj:l a;jQj, Fi(a) =
SY L aiFyi=1,2,3.
Thus we have Zjvzl ajEllj = (10).
By use of Theorem 6, the sufficiency can be demonstrated
directly. O

S Numerical computation

In this section, a numerical example is presented to
demonstrate the difference between Theorem 6 and Theo-
rem 8. The H..-norm computation of FOPS can be trans-
ferred into semidefinite programming(SDP) problems. To
solve them we use CVX, a package for specifying and solv-
ing convex programs [26, 27].

Exampe 1. Consider an uncertain FOLS (1) with v = 0.5,

A= [01 ﬂ,B_ m,c_[l 9].D=0.

where the uncertain interval is |p + 6| < 3. The system is
stable and we need to compute the system H .,-norm.

It is obvious that this system can be represented by FOPS
(7) with N = 2,

0 1 0 1
Al = |:_1 _3:| aAQ = |:_1 _9:| )

Bi=By=DB,0,=Cy=C,D; = Dy = 0.

The H .-norm computation can be formed as the follow-
ing SDPs. By use of Theorem 6, we have

min vy (11)
s.t. Z1 <0,
=9 <0, (12)

P,Q > O,P,Q € Hos.
By solving this problem, the system H.,-norm is v =
4.52.
p_ 5.71 1.58 + 0.08¢
~|1.58 — 0.08: 4.55 ’

8.83x107 12

Q= [1.20><10*12+7.79x10*14

1.20x10712—7.79x 10714
3.09x107 13 :

On the other hand, By use of Theorem 8, we have
min 7y (13)
s.t. ",11 <0,

12 <0, 14
-PiaQi>0a-PiaQi€H2vi:1727 &
II,Y, Fh, Fy; € Hoyi =1, 2.
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—E\A— ATE;

* * * *
_ —BTE; —F»A —~I — EsB — BTET s * s
SLT e 0p 4 Q4 Fr 45 A FF 4+ ¥*B T _x_%r | <0 ®)
Fy —Ef —1I"A FI —Ef —11"B FT — ET 0 —II—II*
—F1Aj — AJTET * * * *
) —B] Ef — E>A; —~yI — E2B; — Bl E5 * *
Sy = Cj — EsA; D; — E3B; —I * <0. )
e P +e°Q, + Fiy + 57 A Ff +%°B; Fi; Y- %t
Fy — BEf =117 A; F);—FE3 —1I"B;  F3;— Ej 0 —II—11*
—E1A(a) — Aa)” EY * * * *
—B(a)" B} — B2A(a) —~I — E2B(a) — B(a)"E3 * *
C(a) — EsA(a) D(a) — E3B(a) —~I * * < 0. (10)
e P(a) +e°Q(a) + Fi(a)" + X*A(a) Fy(a)” + £*B(a) F3(a)” -X-x *
Fi(a)* — Ef —TI*A(a) Fy(a)" — E7 —TI"B(a)  F3(a)” — ET 0 11 - 11*

By solving this problem, the system #.,-norm is v =
1.02.

p_ 3.70 —2.64 — 3.414]
T -2.64 + 3.414 503 |
P 6.98 —2.13 — 2.73{]
7 |-2.13 +2.73i L2 )
0 = 3.70 —2.65 + 3.417]
' | -2.65 — 3.41i 503 |
Q) = 6.98 —2.13 4 2.73]
P23 - 2.73i 172 |-

where other variables are omitted here.

It is obvious that the new H -norm computation (13-14)
is more accurate, which is 25% smaller than (11-12). There-
fore, the alternative bounded real lemma in Theorem 8 pro-
vide a less conservative condition to deal with H ., perfor-
mance of FOPS than Theorem 6.

Actually we can directly use Theorem 7 to compute the
system H.,-norm. It can be realized by solving each in-
dividual optimization problem (13—14) within the uncertain
interval |p + 6] < 3. The system H..-norm can be obtained
by the global minimum value.

The relationship between the system H,-norm and the
uncertain parameter is shown in Fig. 1.

It is obvious that the global minimum value can be reached
at two endpoints and its actual value is about v = 1.02.

6 Conclusion and future works

The linear matrix inequality (LMI) characterizations of
fractional-order linear systems are surveyed. To motivate
LMI-based H . control of FOLS, two bounded real lemmas
of fractional-order linear systems are introduced for two d-
ifferent norms respectively. Besides, an alternative bounded
real lemma is proposed and then is generalized for the con-
vex polytopic uncertainties in terms of a set of LMIs.

The future topics can be directed into several aspects. The
first will be H ., control of FOLS or FOPS. Besides, some
effective bounded real lemmas for FOLS with v > 1 need to
be investigated further.
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